Coal gasification in Spain – the future of sustainable coal

Francisco García Peña – ELCOGAS Puertollano IGCC plant
Index

1. The ELCOGAS IGCC power plant

2. Lessons learnt for the future
1. The ELCOGAS IGCC power plant

1.1 Introduction

1.2 Description of the IGCC process

1.3 Operational data

1.4 CO$_2$ separation and H$_2$ production

1.5 Flexibility of feeding and products

2. Lessons learnt for the future
ELCOGAS is an Spanish company established in April 1992 to undertake the planning, construction, management and operation of a 335 MWeISO IGCC plant located in Puertollano (Spain)
Index

1. The ELCOGAS IGCC power plant
 1.1 Introduction
 1.2 Description of the IGCC process
 1.3 Operational data
 1.4 CO₂ separation and H₂ production
 1.5 Flexibility of feeding and products

2. Lessons learnt for the future
Description of the ELCOGAS IGCC process

- **Coal**
- **PetCoke**
- **Limestone**

Coal preparation

- **Coal - N₂**

Gasifier

- **Raw Gas**
- **Quench Gas**
- **Slag**
- **Fly ash**

HP Boiler

- **HP Steam**

MP Boiler

- **MP Steam**

Filtration

- **Water wash**
- **Water to treatment**
- **Air**
- **O₂**

Heat Recovery Steam Generator

- **Flue gas to stack**
- **Steam**
- **Hot combustion gas**

Condenser

- **Cooling tower**

GAS TURBINE 200 MW ISO

- **G**
- **N₂**
- **O₂**

Sulfur recovery

- **Sulfur (recovery of 99.8%)**
- **Waste N₂**

Sulfur recovery

- **Clean Syngas**
- **Tail Gas**

Steam Turbine

- **135 MW ISO**

Air Separation Unit

- **Compressed air**
- **Waste N₂**
Description of the ELCOGAS IGCC process

Fuel design values

Fuel design is a mixture 50/50 of coal/coke which now is 45/55. Moreover some tests with biomass were undertaken (meat bone meal, grape seed meal, olive oil waste).

<table>
<thead>
<tr>
<th></th>
<th>COAL</th>
<th>PET COKE</th>
<th>FUEL MIX (50:50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%) w</td>
<td>11.8</td>
<td>7.00</td>
<td>9.40</td>
</tr>
<tr>
<td>Ash (%) w</td>
<td>41.10</td>
<td>0.26</td>
<td>20.6</td>
</tr>
<tr>
<td>C (%) w</td>
<td>36.27</td>
<td>82.21</td>
<td>59.21</td>
</tr>
<tr>
<td>H (%) w</td>
<td>2.48</td>
<td>3.11</td>
<td>2.80</td>
</tr>
<tr>
<td>N (%) w</td>
<td>0.81</td>
<td>1.90</td>
<td>1.36</td>
</tr>
<tr>
<td>O (%) w</td>
<td>6.62</td>
<td>0.02</td>
<td>3.32</td>
</tr>
<tr>
<td>S (%) w</td>
<td>0.93</td>
<td>5.50</td>
<td>3.21</td>
</tr>
<tr>
<td>LHV (MJ/kg)</td>
<td>13.10</td>
<td>31.99</td>
<td>22.55</td>
</tr>
</tbody>
</table>

With those fuels at 50:50, the whole plant demonstrated a gross efficiency of 47.2% and a net efficiency of 42%, under acceptance tests in 2000 year.

Syngas composition

<table>
<thead>
<tr>
<th></th>
<th>RAW GAS</th>
<th>Design</th>
<th>CLEAN GAS</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO (%)</td>
<td>Real average</td>
<td>59.26</td>
<td>61.25</td>
<td>CO (%)</td>
</tr>
<tr>
<td>H₂ (%)</td>
<td>21.44</td>
<td>22.33</td>
<td>H₂ (%)</td>
<td>21.95</td>
</tr>
<tr>
<td>CO₂ (%)</td>
<td>2.84</td>
<td>3.70</td>
<td>CO₂ (%)</td>
<td>2.41</td>
</tr>
<tr>
<td>N₂ (%)</td>
<td>13.32</td>
<td>10.50</td>
<td>N₂ (%)</td>
<td>14.76</td>
</tr>
<tr>
<td>Ar (%)</td>
<td>0.90</td>
<td>1.02</td>
<td>Ar (%)</td>
<td>1.18</td>
</tr>
<tr>
<td>H₂S (%)</td>
<td>0.81</td>
<td>1.01</td>
<td>H₂S (ppmv)</td>
<td>3</td>
</tr>
<tr>
<td>COS (%)</td>
<td>0.19</td>
<td>0.17</td>
<td>COS (ppmv)</td>
<td>9</td>
</tr>
<tr>
<td>HCN (ppmv)</td>
<td>23</td>
<td>38</td>
<td>HCN (ppmv)</td>
<td>-</td>
</tr>
</tbody>
</table>
1. The ELCOGAS IGCC power plant

1.1 Introduction
1.2 Description of the IGCC process
1.3 Operational data
1.4 CO\textsubscript{2} separation and H\textsubscript{2} production
1.5 Flexibility of feeding and products

2. Lessons learnt for the future
1st 5 years: Learning curve

2003: Major overhaul Gas Turbine findings
2004 & 2005: Gas turbine main generation transformer isolation fault
2006: Gas turbine major overhaul & candle fly ash filters crisis
2007 & 2008: ASU WN₂ compressor coupling fault and repair MAN TURBO
2010: No operation due to non-profitable electricity price (30-40 days).
2011: 100,000 EOH Major Overhaul
2012: 1,498 hours in stand-by due to regulatory restrictions. (3,969 in 2013)
ELCOGAS power plant emissions in NGCC & IGCC modes

Natural gas (NGCC):
- SO2: 29 mg/Nm³
- NOx: 250 mg/Nm³
- Particles: 4 μg/Nm³

Coal gas (IGCC):
- SO2: 20 mg/Nm³
- NOx: 650 mg/Nm³
- Particles: 50 μg/Nm³

Legend:
- EEC 88/609
- ELCOGAS Environmental Permit
- EU Directive 2010/75/EU DEI
- ELCOGAS 2012 average
Operational data: Variable costs 2012

<table>
<thead>
<tr>
<th>Fuel mode</th>
<th>Fuel</th>
<th>Consume (GJPCS)</th>
<th>Production (GWh)</th>
<th>Heat rate (GJPCS/GWh)</th>
<th>Fuel cost (€/GJPCS)</th>
<th>Partial cost (€/MWh)</th>
<th>Total cost (€/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
<td>Natural gas</td>
<td>59.987</td>
<td>2,891</td>
<td>20.748</td>
<td>10.46</td>
<td>216.98</td>
<td>216.98</td>
</tr>
<tr>
<td>NGCC</td>
<td>Natural gas</td>
<td>249.495</td>
<td>22,154</td>
<td>11.262</td>
<td>10.46</td>
<td>117.77</td>
<td>117.77</td>
</tr>
<tr>
<td>NGCC + ASU</td>
<td>Natural gas</td>
<td>1,854.675</td>
<td>155,148</td>
<td>11.954</td>
<td>10.46</td>
<td>125.01</td>
<td>125.01</td>
</tr>
<tr>
<td>NGCC + ASU + Gasifier</td>
<td>Natural gas</td>
<td>351.147</td>
<td>33,373</td>
<td>10.522</td>
<td>10.46</td>
<td>110.03</td>
<td>128.69</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td></td>
<td></td>
<td>2.021</td>
<td>3.49</td>
<td>7.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petocke</td>
<td>195.947</td>
<td></td>
<td>5.871</td>
<td>1.98</td>
<td>11.61</td>
<td></td>
</tr>
<tr>
<td>IGCC</td>
<td>NG auxiliary</td>
<td>257.700</td>
<td>992,811</td>
<td>260</td>
<td>10.46</td>
<td>2,71</td>
<td>26,30</td>
</tr>
<tr>
<td></td>
<td>consumption</td>
<td></td>
<td></td>
<td>2,555</td>
<td>3.49</td>
<td>8.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>2,536.891</td>
<td></td>
<td>7.422</td>
<td>1.98</td>
<td>14.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petocke</td>
<td>7,368.734</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Net energy variable costs (average 2012)
Unavailability in 4 years maintenance cycle (2009–2012)

Technology at demonstration state

☒ First four large coal-based plants (USA & EU, 1994 - 1998) show 60-80% of IGCC availability (> 90 % considering auxiliary fuel)

☒ Main unavailability causes related with its maturity lack :

☒ Auxiliary system design: solid handling, downtime corrosion, ceramic filters, materials and procedures

☒ Performance of last generation turbines with syngas or natural gas

☒ Excessive integration between units. High dependence and start-up delay

☒ More complex process compared to other coal-based plants. Learning is necessary. IGCC power plants using petroleum wastes show higher availability than 92%
Operational data: Costs

ACCUMULATED INVESTMENT COSTS

Million Eur

<table>
<thead>
<tr>
<th>Year</th>
<th>Fuel handling plant</th>
<th>Cooling system</th>
<th>Control system</th>
<th>A.S.U</th>
<th>B.O.P.</th>
<th>Combined Cycle</th>
<th>Gasification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REPRESENTATIVE YEAR (2008) OPERATING COSTS, WITHOUT FINANCIAL COSTS:

Total: 83,602 k€ (57.98 €/MWh)

- **Fixed costs:**
 - Total: 29,326 k€ (20.39 €/MWh)
- **Variable costs:**
 - Fuels: 54,276 k€ (37.59 €/MWh)
Cost Of Electricity ($€_{2012}/MWh$)
Benefit or lost before taxes is directly related to the existing regulatory framework

Regulatory “Gap” + payments by CO₂ not perceived

MLE Transition competition costs
PdV RD 134/2010

Law 15/2012

∑ Losts: Million € 110.7
1. The ELCOGAS IGCC power plant
 1.1 Introduction
 1.2 Description of the IGCC process
 1.3 Operational data
 1.4 CO$_2$ separation and H$_2$ production
 1.5 Flexibility of feeding and products

2. Lessons learnt for future
CO₂ capture & H₂ production: pilot plant

COAL + COKE

GASIFICATION

Raw gas

FILTRATION SYSTEM

PURIFICATION & DESULPHURATION

COMBINED CYCLE

Recycle compressor

H₂ rich gas
37.5% CO₂
50.0% H₂
3.0% CO

IP STEAM

SHIFTING REACTORS

SWEET / SOUR

CO + H₂O → CO₂ + H₂

CO₂ & H₂ separation
(Chemical, aMDEA)

HYDROGEN PURIFICATION (PSA)

100 t/d

1.3 bar

Tail gas
40%

Pure H₂ (2 t/d)
99.99% H₂ @ 15 bar

CO₂ capture & H₂ production: pilot plant

Flow (Nm³/h)	SWEET	SOUR
3,610 | 4,006

P (bar) | 19.8 | 23.6
T (°C) | 126 | 138
% CO₂ | 60.45 | 53.72
%H₂ | 21.95 | 19.57
%H₂O | 0.29 | 10.40
%H₂S | 0 | 0.70
%COS | 0 | 0.11
CO₂ capture & H₂ production: pilot plant

Engineering: Empresarios Agrupados
CO₂ unit: Linde-Caloric
PSA unit: Linde
Control: Zeus Control
Reactors: Técnicas Reunidas
Catalysts: Johnson Matthey
Construction: Empresas locales
1. The ELCOGAS IGCC power plant
 1.1 Introduction
 1.2 Description of the IGCC process
 1.3 Operational data
 1.4 CO2 separation and H2 production
 1.5 Flexibility of feeding and products

2. Lessons learnt for future
Battery of biomass co-gasification tests

<table>
<thead>
<tr>
<th>Test Month/Year</th>
<th>BIOMASS</th>
<th>Biomass dosage ratio (% wt)</th>
<th>Biomass (t)</th>
<th>Test Duration (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Meat Bone & Meal</td>
<td>1-4.5%</td>
<td>93.3</td>
<td>15</td>
</tr>
<tr>
<td>2007-2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Olive oil waste</td>
<td>1-2 %</td>
<td>1,572.8</td>
<td>800.3</td>
</tr>
<tr>
<td>Mar 2009</td>
<td></td>
<td>4%</td>
<td>652.1</td>
<td>154</td>
</tr>
<tr>
<td>Jun 2009</td>
<td></td>
<td>6%</td>
<td>395.8</td>
<td>64.4</td>
</tr>
<tr>
<td>Sept 2009</td>
<td></td>
<td>8%</td>
<td>383.9</td>
<td>46</td>
</tr>
<tr>
<td>Nov-Dec 2011</td>
<td>Olive oil waste</td>
<td>10%</td>
<td>656.6</td>
<td>62</td>
</tr>
<tr>
<td>Oct-Nov 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 2012</td>
<td>Grape Seed Meal</td>
<td>2%</td>
<td>179.3</td>
<td>127</td>
</tr>
<tr>
<td>Nov-Dec 2012</td>
<td></td>
<td>4%</td>
<td>425.7</td>
<td>119.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>4,987.3</td>
<td>1,647.7</td>
</tr>
</tbody>
</table>
1. The ELCOGAS IGCC power plant

2. Lessons learnt for the future
 2.1 What is gasification?
 2.2 Gasification flexibility
 2.3 Engineering plant modifications
 2.4 “Demonstration project”
 2.5 CO₂ capture experience
Gasification itself is not the core, neither the root of the project nor plant problematic. On the contrary, they are the design & detailed engineering of the auxiliary systems. Each plant is different because they depend on:

- Available raw fuel
- Chosen gasifier technology
- Expected use of syngas
- Environmental regulations

So, Engineering & O&M expertise are crucial

- **Syngas production by gasification. Processes**

 - **Feeding**
 - Dry
 - Wet
 - **Gasification**
 - Fixed bed
 - Fluid bed
 - Entrained flow
 - **Cooling**
 - Heat exchangers
 - Direct with water
 - Chemical
 - **Particles separation**
 - Dry filtration
 - Wet filtration
 - **Scrubbing**
 - One step
 - Two steps
 - **Desulphurization**
 - COS hydrolyzation
 - Chemical absorption
 - Physical absorption
 - Adsorption
 - **Clean syngas**
Index

1. The ELCOGAS plant

2. Lessons learnt for the future
 2.1 What is gasification?
 2.2 Gasification flexibility
 2.3 Engineering plant modifications
 2.4 “Demonstration project”
 2.5 CO₂ capture experience
Gasification flexibility

Selection of the best gasification technology depending on:

- Fuel (C content, LHV, available quantities)
- Gasifier size required to obtain a competitive product
- Products required (H₂, Chemicals, Fischer-Tropsch liquids, energy w/ CO₂ capture, ..)

Diagram:

1. **Feedstock**
2. **Gasifier**
3. **Gas clean-up**
4. **Syngas**
 - **Power**
 - **Chemicals**
 - **Transportation fuels**
Gasification deployment

Accumulated world gasification capacity

Gasification by region

(Fuente: Higman Consulting, 2012)
Gasification Market Shares in China

- by syngas capacity
- including all constructed plants and contracted projects, as of Q3 2011

China Gasification Market Outlook 2011-2015

<table>
<thead>
<tr>
<th>Products</th>
<th>Capacity Million tonne/year</th>
<th>Syngas Demands Nm³/hour</th>
<th>Number of Gasifiers (5000 tonne/day per gasifier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal to Liquids (CTL)</td>
<td>12</td>
<td>9,710,000</td>
<td>50</td>
</tr>
<tr>
<td>Coal to Olefins (CTO)</td>
<td>6</td>
<td>3,660,000</td>
<td>19</td>
</tr>
<tr>
<td>SNG</td>
<td>23×10^8 Nm³</td>
<td>8,710,000</td>
<td>45</td>
</tr>
<tr>
<td>Ammonia</td>
<td>13</td>
<td>4,471,000</td>
<td>23</td>
</tr>
<tr>
<td>Methanol (excluding CTO)</td>
<td>10</td>
<td>2,290,000</td>
<td>12</td>
</tr>
<tr>
<td>Methanol to Ethylene Glycol (MEG)</td>
<td>3</td>
<td>1,500,000</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30,341,000</td>
<td>157</td>
</tr>
</tbody>
</table>

(Fuente: EPRI, 2012)
Index

1. The ELCOGAS IGCC power plant

2. Lessons learnt for the future
 2.1 What is gasification?
 2.2 Gasification flexibility
 2.3 Engineering plant modifications
 2.4 “Demonstration project”
 2.5 CO₂ capture experience
ANNUAL EVOLUTION OF APPROVED DESIGN CHANGES

Engineering plant modifications

Commissioning of BOP & NGCC
Commissioning of ASU & Gasification and CCwSG
1. The ELCOGAS IGCC power plant

2. Lessons learnt for the future
 2.1 What is gasification?
 2.2 Gasification flexibility
 2.3 Engineering plant modifications
 2.4 “Demonstration project”
 2.5 CO₂ capture experience
“Demonstration project“

Investment costs at ELCOGAS. Learning

REGULATORY SUPPORT is essential in a technology demonstration project at commercial scale

Total production cost
1. The ELCOGAS plant

2. Lessons learnt for the future
 2.1 What is gasification?
 2.2 Gasification flexibility
 2.3 Engineering plant modifications
 2.4 “Demonstration project”
 2.5 CO$_2$ capture experience
CO₂ capture: Real experience at ELCOGAS

Comparison between costs of CO₂ capture technologies

Source: DOE/NETL CCS RD&D ROADMAP (December 2010)
Real experience at ELCOGAS: results and learning

CO₂ capture in IGCC plants

- **With SWEET catalyst**
 - Fuel preparation
 - Gasification
 - Filtration and wet scrubbing
 - Desulphurization and sulphur recovery
 - Unity of CO₂ capture
 - Combined cycle

- **With SOUR catalyst**
 - Fuel preparation
 - Gasification
 - Filtration and wet scrubbing
 - Unity of CO₂ capture
 - Combined cycle

Based on our CO₂ capture pilot plant, we have scaled the cost of a CO₂ capture unit at scale 1:1 about 350 M€. Approximately, it represents the cost of the desulphurization and sulphur recovery units in an IGCC w/o CO₂ capture.

By installing an IGCC with CO₂ acid capture to store or use CO₂ together with ~1.5% H₂S, the investment costs are similar to those w/o CO₂ capture. And the only penalty is the decreasing efficiency:

- From 42% currently
- and from 50% near future
Summary

• Technology at commercial demonstration scale power plant requires a **long term regulatory frame**

• **IGCC** with or without CCS is a promising technology with the **minimum variable costs and the best environmental performance and** it can be adapted to multifuel and polygeneration

• Following IGCC generation must **learn from existing plants**

• Main **burden** for deployment is **high investment requires** a **long term regulatory frame**
Coal gasification in Spain – the future of sustainable coal

Francisco García Peña – ELCOGAS Puertollano IGCC plant

THANK YOU FOR YOUR ATTENTION

fgarcia@elcogas.es